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Abstract 

An elementary theory for a radiation field with any spin J is presented. This is a natural 
extension of Maxwell's equations for the electromagnetic field. The idea is to use the 
generators for the U(2) group in a multidimensional representation. These generators 
are a linear combination of the ones for infinitesimal Lorentz transformations. The con- 
stants of the motion in this formahsm are discussed. As an example, angular distributions 
of the Poynting vector are given. 

1. Introduction 

Since the late 1950's R. H. Good,  Jr. and his collaborators (Good,  1957; 
Hammer and Good,  1957, 1958) have developed a field theory for massless 
particles with any spin J,  and later they applied the same idea for massive 
particles (Weaver et al., 1964; Shay et al., 1965; Nelson and Good,  1968). 
Their basic idea is to reformulate Maxwell 's equations using a spin operator.  
We will use the same idea and reformulate Maxwell 's equations using a gen- 
aralized Pauli spin operator instead of  the usual spin operator .  This idea was 
originally presented by O. Laporte and G. E. Uhlenbeck (1931'). In this paper 
we wish to present an elementary theory for a radiation field with any spin J. 
This theory is a natural extension of  Maxwelt 's equations for the electro- 
magnetic field. In this formulation matr ix  mult iphcat ion is the only mathe- 
matical technique needed. 

The essential idea is to use the generators for the U(2) group in a multi- 
dimensional representat ion whose dimension is determined by the spin of 
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the field in question. Since the number of generators needed for the U(2) 
group is 4, they can correspond to the ( x , y ,  z, ict) coordinates. We will show 
that these generators are a linear combination of the generators of infinitesimal 
Lorentz transformations (Naimark, 1964). 3 The simplest nontrivial represen- 
tation of the U(2) group is of course two dimensional, which could be the 
unit matrix and Pauli spin matrix. In this case the equation obtained represents 
a spinor field. The next smallest dimension is 4 and the equation represents a 
vector field. Since vector fields have only three independent components, the 
fourth equation gives the divergence condition on the field. The fact that the 
dimension of the generators of the U(2) group is 4 in the case of a vector field 
is consistent with the concept of composite fields. Namely, the vector fields 
are constructed from two spinor fields. 

The same idea can be extended to fields with any spin J that are constructed 
from a spinor and a (J - ½) field. The total dimension of the U(2) group is 4J; 
the real fields span (2,/+ 1) dimensions and the remaining ( 2 J -  1) dimensions 
describe the divergence conditions. 

We will start with the classical Maxwell's equations and reformulate them 
in terms of  4 x 4 matrices, ~, which with the unit matrix, constitute the 
generators of the U(2) group in four-dimensional representation. After examin- 
ing this formalism, we will be able to find a generalized Pauli spin matrix that 
is directly related to the generators of infinitesimal Lorentz transformations. 
Also we will show that in this representation any set of equations representing 
a field with spin J ~> 1 can be reduced to exactly the same form as Maxwell's 
equations. In this case we have to interpret all physical quantities, for example, 
Ex, Bx,  Ax ,  ~, Jx,  P as each having (2J - 1) components. This is possible for 
both integer and half-odd integer spin fields. Next, we will discuss constants of 
the motion in the Hamiltonian formalism. In this latter section we will present 
a fundamental constant of the motion and additional 3 x 4J 2 independent con- 
stants of the motion. Finally, as an application, we will show the radiation 
patterns of fields with spin J and the total angular momentum L 

2. Maxwell's Equations 

Maxwell's equations are given by 

V" E = 4rrp 

V-B=0 

1 0 4rr-  
- - - - E -  VxB = - - /  
c Ot c 

1 0 
Ot B + V x E = 0  

c 

(2.1) 

3 The only difference between his definition and ours is the X4 coordinate. He chooses 
X4 = ct while we choose X4 = let. Therefore ha, b2, and b3 have a different expression. 
Since we use ia k and ibk asAk and Bk, we obtained the commutation relation (3.2). 



ELEMENTARY U(2)  THEORY OF SPIN-,/RADIATION FIELDS 179 

where/9 and j are charge and current density, respectively, and satisfy the 
continuity condition 

~ p  + v . j  = 0 (2.2) 

If the quantum-mechanical equivalencies between energy and the time 
derivative and between momentum and the space derivative are introduced, 
and the two linear combinations 

P = / ~ + d  
(2.3) 

F - = / ~ -  iE 

are also introduced, the four equations can be expressed in two separate 
group s: 

i~ . f f+=4rrh _ +p- -+ 47rh iep i e-- if+ x F = 7 ic c ic 
and 

~ .  i f _  = _  47rTz__ iep i e__ i f _  + ~ x i f -  = - -  _ 
ic e ic 

(2.4) 

(2.5) 

with the continuity condition 

e 
i - - i c p  +/~ '~= 0 

C 

Equations (2.4) and (2.5) can be expressed in the matrix forms 

(2.6) 

and 

l 
- i  ~ - p z  py  

C 
pz - i  U - p x  

c C 

- p y  px  - i  c 

\ px  py pz   xtl - p y  

- ~ z  

- i  c 

X t ~v + & 
= 47r__..hh 

z+ ic fz  

ic 

(2.7) 

/ i  L 
C 

pz 

- p y  

px  t t, t e px  - P Y l  F y -  JY i c - = 47r_~h 

~,x i~  - p z ]  - ic jz 

py pz  i e l  - i c  

(2.8) 

where these two matrices have determinant [(e/c) 2 - p2 ] 2 
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From these two equations two wave equations can be obtained: 

4rdi{Pxf+ief-picp 1 
[(c)2-P2](; :)(Fo+)= ic \ff']'+ieicp / 

and 

(2.9) 

(ff-t_47rh i~×j- i ~j+p'icp~ (2.10) 7),o j 
where the fourth components  of  equations (2.9) and (2.10) represent the con- 
tinuity condition. Therefore one can consider equations (2.7) and (2.8) as 
basic equations for the electromagnetic field. 

Now three matrices are defined: 

(000) tl C: °!) 0 0 - i  i _ 0 0 0 - i  _ i 0 0 
13x - , Ey = ,13z = 

0 i 0 0 0 O ]  0 0 

i 0 0 i 0 0 i 0 

(2.11) 

The matrix operators in equations (2.7) and (2.8) can then be expressed in 
the form (Laporte and Uhlenbeck, 1931) 

pz Tie -px -py 

-py px ¥i ~ -pz 

px py pz ~i ~-/ 

C 
= ~ i - -  { - z p  • 13 ( 2 . I 2 )  

C 

where { represents a 4 x 4 unit matrix. As is easily seen, the three matrices are 
Hermitian and satisfy the relationships 

Ei2 = 4, 2i2j =- 13j£i =i13k (2.13) 
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where ( i , j ,  k )  are cyclic permutations of (x, y ,  z). These relationships are exactly 
those satisfied by the Pauli spin matrices. Therefore, the ~ matrices and unit 
matrix are considered as the four-dimensional representation of the U(2) group. 

Under the unitary proper transformation that corresponds to the transfor- 
mation from cartesian coordinates to spherical tensor coordinates, 

U =  i , ~,~ o 

0 0 - 

det (U) ; 1 (2.14) 

the E; matrices are transformed to 

2;X ~ 

1 

1 

v~ 
0 

i o½ 

1 
0 

,/5 
I 

0 
,/5 

1 o 

/ 0 - ~  o 

1 i 
o - T o  
f i 

0 ,~  o F 

/ i 

o o (2.1 s ) 
2z = 0 - 1  

1 0 

In these expressions the 4 x 4 matrix will be divided into four parts, 

where ,STis the 3 x 3 spin matrix with magnitude J = 1,L)is the 1 x 3 divergence 
matrix, Gis the 3 x 1 gradient matrix, and adjoint to D, and ffis the 1 x 1 zero 
matrix (see Appendix). Then the basic equations (2.7) and (2.8) can be 
expressed as 

[~-('0 ~ ) + P - ' ( f f  ~ ) ] ( F O ) = ~ ' ~ ( c J - p )  (2.17) 
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and 

where / 7'+- = Uff +-. 
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0 ) + ~ . ( ~  G)](ff'-tj\ 0 =~47rh(_cJp) (2.18) 

3. The Generalized ~ Matrix and the Infinitesimal Lorentz Group 

The previous ~ matrix will be divided into two operators 

= , B i  = (3.1) 
Oi Di 

These six matrices satisfy the commutation relations 

[Ai,Bi] =0 

[Ai, A/] = [Bi,B/] = iAk (3.2) 

[Ai,B/] = [Bi,A/] =iBx 

where (i,f, k) are cyclic permutations of (x,y,  z). From these relationskips 
one can see that all A i and B i a r e  the generators of infinitesimal Lorentz trans- 
formations except for a phase factor i (Naimark, 1964). Since 2i = Ai + Bi one 
can define another combination Zi = Ai - Bi and then one can separate 2i 
and 2;~ completely, namely, 

[~,., ~:~,1 = 0 

for all i and i', and 

(3.3) 
[I2;, t;;1 = 2 i ~  

for cyclic permutations of (x, y ,  z). 
In this paper we have used 2i in equations (2.17)and (2.18), but one can 

express the same equations in terms of Z~ if source (j, cp) are interchanged. 
Therefore, selection of ~i rather than ~i is ambiguous at the moment, but the 
reason for the choice will be given in Section 6. 

A successful generalized ~,(J) matrix for a spin-J field, analogous to the 
definition (2.16) is 

~(J) = Y \D(J) - ~ ( S -  1) 

where ~(J) is the 4J x 4J matrix and are required to satisfy the relationships 

~:~(:)~ = ~, :c~(:)~:(:) : - :cj(og~(:): i:c~(:) (3.s) 
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Also ff(~, is the (2J + 1) x (2./+ 1) spin matrix with magnitude J , / ) ( J )  is the 
(2J - 1)'x ( 2 / +  I) divergence matrix, G(J) is the (2J + t) x (?~r _ 1) gradient 
matrix, and adjoint t o / ) ( J )  and ff(J - 1) is the ( 2 J -  1) x (2J - 1) spin 
matrix with magnitude J -- 1. From the relationships (3.5) one obtains the 
following relationships: 

Si (J )S i (J )  + a i ( J ) O i ( J )  = j2~ (3) 

s i ( s ) G i ( s )  - G i ( J ) S i ( J  - 1) = 0 

D i ( J ) S i ( J )  - S i ( J  - 1)Di (J )  = 0 

D i ( J ) G i ( J )  + S i ( J -  I ) S i ( J  - 1) = j 2 ~  ( j  _ 1) 

S ~ ( J ) S j ( J )  + G ; ( J ) D / ( J )  -- - S j ( J ) & ( J )  - G j ( J ) O ~ ( J )  

= ~ s k ( J )  (3 .6 )  

& ( J ) G t ( J )  - G i ( J ) S j ( J  - 1) = - S j ( J ) G M )  + G j ( J ) S i ( J  - 1) 

= UGk(J) 

Di(J)Sj(J) -- Si(J - J)Dj(J) = -Dt(J)Si(J  ) + Si(J - 1)Di(J) 

= iJDk (J) 

Di(J)Gj(J) + Si(J - 1 )S i ( J -  1) = - D t ( J ) G i ( J  ) - S t ( J -  1)Si(J-  I ) 

- - - i J s k ( J -  1) 

One can easily show that these are consistent with the relationships 

Si(S)St(J ) - Sj(J)Si(J) = iSk(J) 

S i ( J -  1 )S t (J -  t ) - S t ( J -  1)S i (J -  1 ) = i S k ( J -  i )  

Si(J)Gi(J) - Gi(J)Si(J - 1) =--St(J)Gi(J  ) + Gi(J)Si(J - 1) (3.7) 

= iGk(J) 

Di(J)St(J) - S i ( J -  t ~ i ( J )  = -Dj(J)Si(J) + S i ( J -  1)Dj(J) 

= i O k ( J )  

where (/, j, k) are cyclic orders of (x, y ,  z). 
Analogous to the definition (3.1) one can define 

Si(J--  ' ~ j D i ( J )  - ( j +  1 ) S i ( J - I  

(3.8) 
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These six Ai(J) and Bi(J) satisfy the relationship (3.2). Under a unitary proper 
transformation, these Ai(J ) and Bi(Y) are transformed into 

and 

where 

and 

Ai(J) = ½z,~(J) + ~e;p(~ (3.9) 

n;(,O = ½e~'(a) - ½e?'(a) 

0 Y4(:) = 
~(J-½) 

~f(:) = (~0 (J-½) 

{(:- ½)) 
0 

0 

-~(J ½1) 

e~(j)=(o -i,(J- ½)) 
(a_!)  o 2 

(3.1o) 

s,(a- ½) 
I f j  = 1 1 , 1 3, Ai(~) = Bi(½) = ½oi, hence 2i(½) = ai and 2i(~) = 0 where oi are Pauli 
spin matrixes. We will discuss the unitary proper transformation in Section 6. 

From relationship (3.6) one can derive the generalized vector algebra for 
a multidimensional representation (see Appendix). 

4. Generalized Maxwell's Equations 

Analogous to the two basic Maxwell's equations (2.17) and (2.18), one can 
construct two basic field equations for spin-./fields, 

e ( l (d)  0 - ] ] ( F + ( J )  ] 4~ :h [ / ( ~  
c- \0  , ( J  1)) + P" 1 (;((d~ ~(d) 1)) - -~(a- )]J \0(: - i)7 = - c - \ c p ( J -  

and 

~(J- -1) )  + if" 1( ; - ( (2  
- ,~( :  - 1)) j 'tow - 

(4.1) 

)) c t - c o W -  t (4.2) 
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where F-+(J) are (2J + 1)-component fields and 0 ( J -  1) are (2J - 1)-compon- 
ent null fields. The corresponding wave equations are 

I{ce--)2 +P2] ( ;  (J) O{(J- 1)) \O(j(F+(J) 4 r r h -  1)) = c 

fO( o ) X - - - -  " t -p"  
c ~(J - 1) -J \D(J) -S ( J  - 1)]1 \ c p ( J  - 

(4.3) 

Generalized continuity conditions are expressed as 

i e  ~(J - 1 ) i cp (J -  1)+p .  1 - 7D(J)j(J) = 0(y - 1) 
c 1 ( 4 . 5  

fi" j S ( J -  1 ) i c p ( J -  i )=  0 ( J -  1) 

The first one is an ordinary continuity condition while the second one repre- 
sents an irrotational property of charge density in a generalized form. 

Since F x =Dx F+ holds for a vector field, one can define, analogous to it, 
a multicomponent vector and scalar as 

y + -  ~D(j )F+( j )  

p+ 1/3 --7 (J?F-(J~ 
7+ 1 -  1 -  - -f  D(J)j(J) + i 7 S (J - 1 ) icp(J - 1 ) (4.6) 

F__ 1B( j ) i ( j )  _ 1 _  
i - f  S ( J -  1)iep(J - l) 

icp - icp(J -- i) 

where all quantities have (2 , / -  t) components. Then, with the help of rela- 
tionships (3.6), one can derive the equations 

P ' F + =  4rrh _ i e  p +  _ _ -  + - - i c p  +/5 x i f+= 4rrh j + (4.7) 
ic c ic 

and 

~(s - t)1 = - c  \0(J - 

x _,~,j, -4(J-  \ - c p ( J  - 

(4.4) 
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and 

ff" f f  _ 4rrhicp i e  f f - +  fi x f f -=4rrh  -:-_ ] (4.8) 
ic c ic 

The continuity condition is expressed as 

i £ icp + p '  ]± = 0 (4.9) 
c 

These equations are exactly the same as equations (2.4), (2.5), and (2.6) except 
for current densities j-+. 

By exactly the same method, one can define potentials: 

( F + ( J ) ) )  t [ e (;(J) 0 ) 1 IS(J) 
= - -  + / > 7  \O(J - 1 -h c "0 (J - 1) \D(J) 

and 

o ( s -  1)1 ~ [ ~ \o 

and 

o ) 
{ ( J -  1) J \D(J) 

The generalized Lorentz conditions are then 

t]/A(J) 1) ) 
- X ( J -  1)] ] \~b(J -- 

(4.10) 

-S ( J  - 1)] ] \ - ¢ ( J -  1) 

(4.11) 

e 1 - 
i--c ~ (J - 1)iO(J-- 1) + p ' T D ( J ) A ( J )  = 0 ( J -  1) 

If we define 

. l ~ ( j  ..... l ) i ¢ ( J -  1 ) = O ( J -  l) 

1 ~ ( j _  1 ) iq~(J -  t )  7t+ ~ I D ( J ) A ( J )  + i 7 

d -  -= ~ ~(J)A(J) - i ~ ~ ( J -  1)i,(J - l) 

iO -~ i¢(Y - 1) 

one can easily obtain 

/[ ] /5-=h-  / S x A - - i e X - + N ¢ c  

(4.12) 

(4.13) 

(4.14) 
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and the Lorentz condition 

i e i •  + f i - 2  ± = 0 (4.15) 
C 

Equations (4.14) and (4.15) are exactly the same as those of the electromag- 
netic fields except for-A -+ . 

and 

Defining 

5. Hamiltonian and Constants of Motion 
Using equations (4.1)and (4.2) one can write 

e{ F+(J) )=_c~.~,(j)(P'7 (J)))+4rrh(j(J) ) 
\O(J- 1) \O(J--1 \co(J- 1) 

(F-(J)  i ) ) =  cfi. ~,(j)(F-(J) 4rrh (j(j) 1)) 
e \ 0 ( J -  \ 0 ( J -  1)) -- \-cp(J-- 

is . t )  

(5.2) 

t ¢ +(j) \ o ( J -  I ' ¢ -(J) -= \ o ( j -  t 

it is found that for a no-source region the above equations become 

e•+-(J) = ~ c ~  ~(j) ¢± (J) (5.4) 

One can interpret H o = -7- c~ " E(J) as Hamiltonians for free ~±(d) fields. 
Now one can see that the total angular momentum is a good quantum 

number. The total angular momentum ]-(aT) is defined as 

T ( J ) = / 7 + h ( 0  ~(J) 0ST(J- 1)) (5.5) 

where L represents orbital angular momentum. One can easily prove that 

[I(J), H0(J)I = 0 (5 6) 

Another quantity which also commutes with the free-field Hamiltonian is 

]-P (J) =/7+ ½~/E(J) (5.7) 

Since the E matrix satisfies the relationship (3.5), it is easily seen that 

[]-P(J), no(J)]  = 0 (5.8) 

Since there is no unitary transformation between ]-(J) and IP(J) they are two 
different quantities. 
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In order to obtain a relation between them, a unitary transformation U'(f) 
will be defined to satisfy 

u'(s)zi(s3u'( ,r)  -~ = z~e(s) (5.9) 

where the EP(f) were defined in equation (3.10). If this unitary transformation 
is applied to the spin matrix in equation (5.5), it is found that 

U'(J) i f(J-  1) U ' ( j ) - I  = ½Y-P(J) + ff(j _ ½) (5.10) 

This is the same matrix Ai(J) of the Lorentz group defined in equation (3.8). 
Therefore one can prove the relationship between equations (5.6) and (5.8) as 

[(~(J) O~(j_I)),p"~(J)]=U'(ar)-Iu'(J)[(So(J) ; _ I ) ) , P ' Y - ( J ) ]  

X U'(j~-IU'(f)  = U ' ( f )  - t  [ l~p( f ) ,~ .  ~ p(j)] 

0 

"1 

x ~. ~P(J)/u'(J) (5.11) 

and since E P(J) has the form shown in equations (3.10), it is obvious that the 
second term of the equation (5.11)is zero. Therefore 

[(?0) 1 S ( J -  1) ' ~"  ~(J) = [½~J) 'P"  ~(J)] (5.12) 

The commutation relation between the spin operator and the free-field Hamil- 
tonian is equivalent to that between the ½Z(J) operator and the free-field 
Hamiltonian. 

From the above argument one can construct any constant of motion by 

£ ( : -  ½) + l~p(j) u'(s) (5.13) 

where/~+ h/£(J) is always commutable with H0-+ (J). 
In conclusion IP(J)_is a fundamental constant of motion because it corre- 

sponds to X(J - ½) = 0(J - ½) while the total angular momentum is one of  
induced constant of motion. Except for a multiplying constant, one can easily 
find 4J 2 independent X(J - 1/2). This result is entirely different from the one 
obtained in the ordinary spin formalism, where the total angular momentum 
is the only constant of motion. 
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6. Meaning of U'(J) and Composite Fields 

The meaning of  the unitary transformation U'(J)  will be clear if one con- 
siders an explicit example. For a field with spin J = 1, the unitary proper 
transformation is 

tli U'(L) = 1 , det (U ' )  = 1 (6.1) 

0 1 

and if one operates w i t h  U'(1) -1 on a composite field consisting of  two 
spinor fields, Ua Up, one obtains 

i ° 
1 1 

,/2- ,/5 
0 0 
1 1 

i t  /Ul"(1)~r'(2)X ?11 (1'2)~ U,(,) <o / 
~ U ; ( t ) U f ( 2  U ~UI -1  (1,2) 1 

\U+(1) U,(2)/ X,goo (1,2) / 

(6.2) 

A set of the first three fields corresponds to a field with spin 1 and the last 
one corresponds to a field with spin 0. 

From the above example one obtains for elements of  the U'(1) -1 matrix 
Glebsch-Gorden coefficients, that is, 

(U~,~(1, 2), U~(1) U~(2)) = (½, a, 1, ~3lX,/~) (6.3) 

Hence the unitary transformation U'(J) is a proper transformation connecting 
a composite space of a spinor J1 = ½ and a field with J 2  = J ....... ½, with an 
irreducible spherical tensor space of  fields with spin J and J - i .  This is the 
reason why a field with spin J always has associated with it (J - 1) divergence 
conditions. 

The ~ matrix that was defined in equation (2.11) is obtained with the 
proper transformation 

= U ' (1 ) - '  ~P(1)U'(1)  (6.4) 

In order to obtain ~' ,  one has to use an improper transformation. This is the 
reason why we have used ~ instease of  ~ '  in the fundamental equations (2.17) 
and (2.18). 
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Using the above method, one can easily find matrix elements of U'(J) -1 by 

(U~j,M(1.2), Us(l) Uj_ ~,#(2)) = (½, u, J - ½, # I J, M) 

and (6.5) 

(Uf-I,M(1.2), b~(1) Uj-~,~(2)) = (½, u, J -  ½, ~ I J -  1, M) 

The generalized 2(J) matrix is easily found by 

"2(J) = U'(J) -1 "~P(J)Lf (J) (6.6) 

It is clear that the U(2) theory is consistent with a theory of composite fields. 

7. An Application 

As an example, we have calculated angular distributions of the Poynting 
vector of fields defined by 

#(J) : ~ (F+(J) t , F - ( J ) t )  

0 

As was seen in Section 5, the total angular momentum I(J) is a constant of 
the motion. Therefore F+(J) and F- ( J )  fields for a given I (I ~> J) and its z 
component M are expressed as 

I+J 

F~,M(J,p)= ~, ( L , M -  p,J, IJII, M)gL(r)YL, M_~(a ) 
L = I - J  

I+d 

FI-,M(J,P) = 
L = I - J  

(L,M - p,J, plI, M)fz (r)YL,M_u(~2 ) 

(7.2) 

where p represents the z component of spin J. For gg(r) and fi(r) we have used 
asymptotic forms 

Results for J = 0, ½, 1,3, 2 and I = 0, ½, 1, ~, 2 are shown in Table I and some 
of them are shown in Figures 1 and 2. As was expected, radiation patterns for 
a given (/, M) are very much different for different J. In the case of the J = 2 
field, the radiation patterns depend on the M value (not 'LM] value). 

8. Concluding Remarks 

In this paper, we presented an elementary theory for a field with any spin J. 
An essential idea of this theory is to find an expression for U(2) generators in 
multidimensional spherical tensor space, that is, a generalized Pauli spin matrix, 
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_1 ~ I12 

M I N A A R  ET A L  

J = 3/2 

M + = _ 1/2 

M = ± 3 1 2  

M =~---1/2 

M = ~ _ 3 / 2  

Figure 1-Radiation patterns for a field with spin j -~- 1 and ~. The arrow indicates the 
polar axis. I, the total angular momentum, is ~ and M is its z component. 

~(J). This is directly related to the generators of infinitesimal Lorentz trans- 
formations J n multidimensional space, A(J) and/~(ar). This formalism led us to 
a concept of composite fields, and from it the field equations and the divergence 
conditions were naturally deduced. When the Hamiltonian was introduced we 
found that the total angular momentum is a constant of the motion. However, 
the fundamental constant of the motion is not the total angular momentum but 

fP(J)  = i + ~ ( " 9 -  
The modification of the present formalism for a nonvanishing mass will be 

considered in a future publication. 
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M=.,. 1 

M = ± 2  

J-| J-2 

M --O 

M=-I 

M=I 

< ÷ >  M--±I M = - 2  

M = 2  

M = ± 2  

1=2 

Figure 2 - R a d i a t i o n  pat terns  for a field with spin J = 0, 1, and 2. The arrow indicates the 
polar axis. I, the  total  angular  m o m e n t u m  is 2, and  M is i ts z component .  

Appendix 

Define generalized space derivative operators as 

1 -  
c~rl (a3 = - i 7 s(a3.  

t - 
div (J) = - i ~r- D0r)" ~ 

grad (J) = i 4 G(J) '  
J 

(or) = -- i ~ S ( J  - 1 ) "  curl' 
d 

(At)  
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One can then prove the following relationships with the help o f  equations 
(3.6): 

div (o r) grad (J) - curl' (J) curl' (J) = ~ ( J -  1)V 2 

curl (J) grad (Jr) - grad (J) curl' (J) = O 
(A2) 

div (Y) curl (J) - curl' (J) div (9) = O + 

- curl (f) curl (a r) + grad (J) div (J) = ~(J)V 2 

where Ois a (2 J+  1) x ( 2 J -  I)  zero matrix and O+ is a ( 2 Y -  1) x (2J+  1) 
zero matrix. 

These relationships are considered as a generalized vector algebra because 
if we set J = 1, curl' (Jr) = 0, then one obtains the well-known vector algebra. 
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